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Abstract: 
In [1] we showed that the error in the finite-element solution has two parts, 

namely, the local-error and the pollution-error and in [2] we gave methods for 
estimating and controlling the pollution-error in any region of interest. In this 
paper we will show that the control of the pollution-error is essential in order to 
guarantee that the derivatives obtained from local recoveries have higher accuracy 
than the derivatives computed directly from the finite-element solution and that 
this control must be more stringent than the one needed to guarantee the reliability 
of local a-posteriori error estimation. We give an algorithm for controlling the 
local and the pollution-error simultaneously, in any region of interest. We show 
that, when one is interested in obtaining high accuracy only in some parts of the 
domain, the proposed algorithm gives meshes which are much more economical 
than the ones obtained from the classical adaptive algorithms which control the 
global energy-norm of the error. 



1     Introduction 

Let uh be the finite element solution of the Laplacian in the domain Ü computed 
using a mesh Th and let us assume that we are interested in the error eh = u — uh 

in a mesh-patch u>h C fi, where u denotes the exact solution. In [1] we showed that 

e* = V? + Vf (1.1) 

where V^h is the local-error, V£ is the pollution-error and üh C fi consists of the 
mesh-patch uh together with a few surrounding mesh-layers. The precise definition 
of V? , i = 1, 2 will be given in Section 2 below. The local-error Vf is practi- 
cally the error in the finite-element solution of the Laplacian in Cbh with Dirichlet 
boundary-conditions equal to u on the boundary of üA The pollution-error V2

W is 
practically the exact solution of the Laplacian with Dirichlet boundary-conditions 
equal to (u — uh) on the boundary of uA 

We will now give an example which illustrates the above definitions. Let us con- 
sider the i-shaped domain shown in Fig. la with boundary-conditions correspond- 

ing to the exact solution u(r,i?) = r? sin (-5-)- We computed the finite-element 

solution using the uniform mesh of quadratic triangles shown in Fig. la. We let 
u>h = (0.375,0.625)2 and computed Vfh, Vfh using the definitions given in Section 
2. In Fig. lb we give the graphs V\fh- s, W*h- s, where s is the unit-vector along 
AXA3. We note that the local-error VV^- s oscillates around zero whereas the 
pollution-error Wf- s is almost constant in uA 

Let &{W) denote a local-averaging applied to the vector-field W. For example, 
ä(W) may be constructed by employing local least-squares smoothing as in the 
'superconvergent patch-recovery' proposed in [3-4] (see Section 4, below). By the 
construction of o-, we have a(a1W1 + a2W2) = a^CW^ + a2a(W2) and thus 

flr(VuA) = ä(Vu) - cr{Veh) = <r(Vu) - *(VVf) - <x( W* ) (1.2) 

Further, it can be shown that 

<r( VV?h) ~ 0,        *{VVf) « Wf (1.3) 

and hence 

AT(VU) - cr(V«fc) « VVf (1.4a) 

From the asymptotic analysis 

|flr(Vu) - Vu| « |*(Vu) - VuJ (1-46) 



and hence 

cr(V«) - Vtxfc » VeA (l-4c) 

which implies 

*(VuÄ) - VuA « VVf * (1.4<Z) 

For example, from Fig. lb we can see that 

(<r(Vuh)-Vuh)-snVV?-s. 

Thus, e„ = cr(Vufc) - Vu,,, which is often used as an error-indicator, estimates 
only the local-error, namely ea « VVj" . 

In [5] we have shown that 

|cr(Vti)- Vu |(«) < 0.20 max | VV^ |(ä),        ierCu' (1.5) 

where 0.20 is an empirical constant which was estimated from the numerical re- 
sults in [5] (these results were obtained for large classes of grids of triangles and 
quadrilaterals). Eq. (1.5) was established under conditions which guarantee that 
the pollution error vanishes identically, i.e. Wf = 0. In general, we have 

or(VuA) - Vu w cr(Vu) - V« - VVf * (1.6) 

and thus 

|*(Vufc) - VU|(SB) < |or(Vti) - Vu\(x) + \VVf\(x) 

(1.7) 

< 0.20 max\VV?h\(x) + max\VVf\(x) 

for any x 6T CL)
H
. Hence, in order to control the error in the recovered-gradient 

we must control maxtVVf "|(aj) relative to 0.20 max|W*h|(aj). Thus we must 

design the mesh such that 

max\VVf\(x) < s% (o.20max|VVfh|(aj)) (1.8) 

for some tolerance s% < 100%. In the numerical examples we will show that, 
in general, if (1.8) is not enforced by proper design of the mesh the accuracy of 
the recovered-derivatives is practically the same as the accuracy of the derivatives 
computed directly from the finite-element solution. 

The goals of this paper are: 



1. To show that, in practical computations, the pollution-error can be large 
relative to the local-error, in regions of interest, and, if this is the case, there 
is no gain in the accuracy from local recoveries. 

2. To construct adaptive methods which guarantee the accuracy of the recovered- 
derivatives in a region of interest. 

Remark 1.1. In [2] we showed that in order to obtain reliable error-estimators 
for the energy-norm in a patch of elements one must control the magnitude of 
the pollution-error relative to the local-error in the patch. Here we show that in 
order to guarantee that the derivatives, computed using a local recovery, are of 
higher pointwise accuracy than the derivatives computed directly from the finite- 
element solution one needs to employ more stringent control of the pollution than 
the control needed to ensure the local quality of the energy error-estimators over 
a mesh-patch. 

Following this Introduction we give notations related to the model problem 
and define the pollution-error and its a-posteriori estimate. We give an algorithm 
for the adaptive control of the pollution-error relative to the local-error in any 
region of interest. We then give numerical examples which demonstrate that the 
recovered derivatives have higher accuracy than the derivatives computed directly 
from the finite-element solution only if the pollution-error is controlled relative to 
the local-error. 

2    Definition and a-posteriori estimation of the 
pollution-error 

Let Q, C R2 denote a polygonal domain with boundary du = T = TD U TN 

where TD is the Dirichlet and TN is the Neumann-boundary and f D H TN = 0. 
We will consider the mixed boundary-value problem for the Laplacian which, in 
variational form, reads: 

Find uG Hi   := [u G i/^fi)   u = 0 on TD] such that 

Ba(u,v):=  [ Vu-Vv=  [   fv V v G H^D (2.1) 

If TD =0,   it is assumed that / satisfies the consistency condition   /   / = 0.  In 
J i 

this case the solution u is determined uniquely up to an arbitrary constant. 
For the finite element method we partition the domain Q into square (or quadri- 

lateral) elements with straight edges T defined by the mesh Th and let 

Sl(ü) := [vh G HlD(il) | vh\T G SZ(T)       V T G Th} (2.2) 



(For the quadrilateral elements we employ the bilinear mapping to define the shape- 
functions over a given element.) Here S£(r) denotes the finite-element space over 
r and p is the degree of the elements. We employed the biquadratic polynomial 
space (p = 2) 

Sl(r) := [P | P{xltx2) = £ otijx[xi) (2.3) 

o<;,j<2 

The finite element approximation of the solution of (2.1) satisfies: 

Find uh € S{>TD := Sp
h(Ü)C[HrD(Ü) such that 

Bu(uh,vh)= I   fvh       V vheS%tTD 
Jl N 

(2.4) 

Let £ be an edge and Je denote the jump of the normal derivative of uh on e, 
defined by: 

' (Vuh      - Vu J     ) • ns,   e £ 
» Tjn I Tout7 

J, 

an 

2(/-VuJ     )-ne, eCT 
V ITout' 

i= L N 
(2.5) 

10, ecr D 

Here ns, rtn and Tout denote the unit-normal and the elements associated with the 
edge £, as shown in Fig. 2. The error th := u - uh satisfies the residual-equation: 

Find eh € H^D such that 

Ba{eh,v)= £*»        V»6H|D 
(2.6) 

Terh 

where ^T denotes the element-residual functional given by 

Fr{v) := I vAuh\   + \ £ /< ,        ^ ^ (2.7) 
£C9T' 

Let us assume that the element-residuals have been modified in the following 
way (for the construction see [2] and [7]; see also [8-9]) 

r?Q(v):=rr(v)+   £   /< (2.8) 
cCdmE- 

such that 



jrE0(ü) =  0 V v G Sp
h(r) (2.9) 

Here 0* is the correction for the edge £ and the element T and £,nt is the set of 
interior edges. For any interior edge e it is assumed that 9e

T.n = -0^. We then 

have 

BQ(eh,v)=Y,^Q(v)       V.Gi^ (2.10) 
^ 

Let uh be a patch of elements and let (bh denote a patch which consists of u> 
and a few mesh-layers around it (in the results below üh consists of uh and two 
mesh-layers around it). Let Vf E tfj^ be the local-error in u>h defined by 

BQ{V?,v)= £*?«(») VveHlD (2.11) 

TC.Wh 

Then the pollution-error in uh is Kf" := eh - Vf. In [2] we have proven that 

r,-,h 

^-(x)= Y,Br{K,Gf-WT) (2-12) 

where wT is the best-approximation of G\s) in r by biquadratic polynomials and 

Gf\ x G fi is the function which satisfies 

_AGf)=  _■£*-(*) in    Ü (2.13a) 

&f) =    0 on    TD (2.136) 

AGf)=    o on   TN (2.13c) 

Here i = 1 or 2 and  (ic) denotes the a;,--derivative of Dirac's delta centered at 
OX; 

x. Eq. (2.13a) is understood in the sense of the theory of distributions. 
dVwh 

An a-posteriori estimate of -^—(x) , based on (2.12), can be constructed by 

employing the following steps. Assuming that x is a nodal point of the mesh, we 
compute the finite element approximation 0$ € Sj^ of the solution of (2.13) by 

solving 



Ba(G\%v) = ±(v(x + n,-Ä) - v(xj)       V u € 5^ (2.14a) 

when n, is the unit-vector in the i-th direction. We assume that x + ra, h is also a 
nodal point of the mesh (this can be always achieved with obvious modifications of 
the approximation of G\x)). The function C$1 is the finite-element approximation 
of 

Gf\x) := j-(Gl*+hn'\x) - G&(x)) (2.146) 

where G& is the classical Green's function which satisfies (2.13) with the right- 
hand side of (2.13a) replaced by S(x). Then, we get (see [2]) 

-ä£-(*)| * ( E PAK, Gj! - *T)l) (1 + Ch) 
Tq.wh 

(2.14c) 

where wT is the best-approximation of G^ by quadratic polynomials in r. 
We define the pollution-indicators for the i-th derivative 

^}{x) := \BT(eT(uh),eT(G§))\ (2.15a) 

$}{x) := ||VeTK)||r ||VeT(Öjg||T = rir{uh)r,r{(^) (2.156) 

where eT(uh) and er(G$) (resp. nT(uh) and ^(ÖJJ)) are the error-indicator func- 

tions (resp. element error-indicators) corresponding to uh and (?$, respectively. 
We then define the -pollution-estimate for the i-th derivative in u>h 

M^)=E*)I » = 1,2,        * = 1,2 (2.15c) 
r6Th 

The above quantities can be computed by employing the error-indicator func- 
tions obtained from the local problems: 

Find eT € H1 (r) such that 

BT(eT,v) = F?Q(v)       Vt)e^(r) (2.16a) 

where 

H1(r) = {ve H1 

9-rnr 
= 0} (2.166) 



In the computations we approximate eT using biquartic polynomials.  The func- 
tion eT(uh) (resp. eT(Ö$)) is the exact solution of (2.16) for the residual 7?Q 

corresponding to uh (resp. G\fy. In [2] we have shown that 

dVr. 
h 

2   l<M?\x)(l+Ch) (2.17) 

provided that the element error-indicators are accurate, modulo the pollution-error. 
From the numerical studies given in [2] we have seen that M.\ \X) has essentially 

the same properties as M\ \X). 

Remark 2.1. In [2] we showed that the above a-posteriori estimates of the pollution 

M^Hx) 
give effectivity indices ' h       , k = 1, 2 close to one. In the numerical studies 

^Mx) 
dxi K ' 

given below we employed only M^ (in the discussion below the exponent will be 
omitted). 

Remark 2.2. For a complete discussion of the underlying mathematical framework 
for the pollution problem see [6]. 

3    Adaptive algorithms 

We will now give two adaptive algorithms which can be employed to control 
the local accuracy of the solution. The first is the classical feedback-algorithm for 
the control of the global energy-norm (e.g. [10]; see also [11] and [12] for a differ- 
ent approach) while the second is a new feedback-algorithm for the simultaneous 
control of the local and the pollution-error only in a mesh-patch uh. 

3.1     Globally-adaptive grid 

Let t% be a given tolerance and let us assume that the goal is to construct a 
mesh for which 

l|Vefc||n<t%||Vu||n (3.1) 

where \\W\\l = [ W   W. 

We will construct such a mesh by employing the following algorithm: 

1. Let Th = T£ and go to 3. 

2. For each element T E.Th do: 

9 



2.1. Compute 7/T:= ||VeT||T 

2.2. If J?T > 7 raaa: ?yT, subdivide r. 

3. Compute the finite element solution on Th and £Q =   / ^ rfr. 

4. Check if 

5n<<%l|V«fc||n 

If not go to 2, otherwise stop. 

Here T° is the initial mesh, J?T denotes the element error-indicator, £u is an estimate 
for HVeJIn and 0 < 7 < 1 is a parameter. In the computations below, we took 
7 = 0.9. 

Remark 3.1. It should be noted that the above algorithm does not allow for the 
direct control of the local accuracy in a region of interest. The local accuracy can be 
controlled indirectly through the value of the tolerance for the global energy-norm. 

Remark 3.2. The above algorithm produces meshes which are nearly-equilibrated 
in the energy-norm. In [1] we showed that, for nearly-equilibrated meshes, the 
pollution-error is (indirectly) controlled relative to the local-error. 

Remark 3.3. We underline that the constructed meshes are dependent on T° which 
reflects the domain of interest (i.e. the domain of interest should coincide exactly 
with one element or the union of several elements from the coarsest mesh). 

3.2     Global/local adaptive grid 

Let us assume that the goal of the computation is to achieve a prescribed 
i%-accuracy in the relative-error for the recovered-gradient in the mesh-patch u>h, 
namely 

|»(Vufc)-Vu|(»)£<%>        xeujh (32) 

0" h 

where ä2
h is an average-value of the square of the gradient of the exact-solution 

over uh, 

^^{L^2 (3-3) 

From (1.7) we see that this goal can be achieved by designing the grid such that 

10 



^:=«k,p% (3.4) 
au,h 

and then enforcing the condition 

\\VV?\\uh<6%\\VVf\l» (3.5) 

Remark 8.4. Note that (3.4) and (3.5) were obtained from (1.7) and (1.8), respec- 
tively by replacing the maximum norm by the average mean-square value i.e. by 
assuming that 

^Iv^clEgk <3-6> 
The grid which controls, simultaneously, the local- and the pollution-error in 

ujh is constructed using the following algorithm: 

1. Let Th = T% and set flag = 0. 

2. Compute the finite element solution on Th. 

3. Check if 

O < t% (3-7) 

If yes and flag = 0 go to step 5. 

If yes and flag = 1 go to step 7. 

4. For each element T € Th: 

4.1 Compute rjT := ||VeT||T 

4.2 If rjr > 7 max rjT, subdivide r. 
h 

■rCw0 

Set flag = 0 and go to step 2. 

5. Compute the pollution-estimate for the gradient 

MW> = J\ uh\ 

\ 

E 04.T + far) (3-8) 

Check if 

11 



MuH<S%Swh (3.9) 

If yes set flag = 1 and go to step 2. 

6. For each element r G Th, r % üh: 

6.1 Compute the pollution-indicator for the gradient in r, fiT - \J ß\,T + f4,T- 

6.2 If ßr > 7 max uT, subdivide T. 
r-T  —    i    T£Th ' 

rgü'1 

Compute the finite element solution on the new mesh and go to step 5. 

7. Stop. 

In the numerical examples below we employed 7 = 0.9. The grid constructed as 
described above will be called global/local adaptive grid with respect to ujh. 

Remark 3.5. Note that the above algorithm gives us direct control of the accuracy 
of the finite element solution in the mesh-patch oA 

Remark 3.6. The global/local adaptive meshes are obtained by enforcing, simul- 
taneously, (3.7) and (3.9). 

Remark 3.7. The meshes constructed by the feedback algorithm in steps 4, 5 are 
called pollution-adaptive with respect to uh. 

Remark 3.8. We underline that, for the global/local adaptive grids, the error in 
the mesh-patch of interest may be controlled to be as small as desired while, at 
the same time, the error in the global energy-norm may be very large. 

Remark 3.9. A different approach for constructing global/local adaptive grids is 
given in [13]. 

4    The quality of the recovered derivatives in the 
interior of the mesh 

Practical computations involve polygonal domains with several reentrant cor- 
ners and points where the type of boundary-conditions changes from Dirichlet to 
Neumann. In such computations the effect of the pollution can be very significant. 
Let us consider a boundary-value problem with two-singular points as our model 
example. Let tt be the polygonal domain ABCDEFGH shown in Fig. 3 and let the 
exact solution 

12 



u(Xi,x2) = r3
c sin {-±) + r*F sin (—J 

where rc = ^/fo - (xc)i)2 + (*2 " (^cW2 and similarly for r>, while t?c (resp. 0F) 
is the angle measured in the clockwise (resp. counter-clockwise) direction from 
BC (resp. FG). We let A = (-1,1), B = (-1,0), C = (0,0), D = (0,-1), 
E = (2,-1), F = (2,0), G = (3,0), H = (3,1). We considered the mesh-patches 
wf and w£ which consist of the part of the mesh which covers the fixed subdomains 
Ü, = (0.375,0.625) x (-0.625,-0.375) and 02 = (2.375,2.625) x (0.375,0.625), 
respectively. (In the examples below we will use an initial mesh T% which includes 
elements which cover exactly fta and ü2. This mesh is different than the initial 
mesh employed to arrive to the uniform mesh depicted in Fig. 3.) The goal of the 
computations given below, is to control the accuracy of the finite-element solution 
(in the subdomains üt and fl2) below a given tolerance and, at the same time, to 
obtain better accuracy, than the accuracy achieved by the finite-element solution 
(in these subdomains), by employing the recovered derivatives. 

In the numerical results below we will utilize the following quantities to re- 
port the accuracy achieved by the gradient of the finite-element solution and the 
recovered-gradient in a mesh-patch uh. 
1. The pointwise and the maximum relative-error in the gradient of the finite- 

element solution in u : 

Ph{x) = lV" -.VMfcl(8) , P^ = m^Ph(x) (4.1) 

2. The pointwise and the maximum relative-error in the recovered-gradient in uh: 

Trh(x) = J r-^ — ,        ^ = max7rfc(aj) (4.2) 
xeu>n 

3.   The pointwise effectivity-index for the error-estimator based on the recovered- 

gradient in uh: 

_ 1»(V"0 - V^K*) (4.3) 

In the numerical examples below, we employed the 'superconvergent patch- 
recovery' (given in [3-5]) to construct the recovered derivatives cr(Vuh). In partic- 
ular, for the biquadratic elements employed in the examples we let: 

13 



*(*«*)|T = E«*(V«A)|, ^ + E^K(^,)|y +a*X2(Vuh)\y)NY 

(4.4) 

+ \{<r*Xi {Vuh)\z + aX2 (Vuh)\z + aXs (Vuh)\z + <rx^ (Vuh)\z) Nz 

where X, Y, Z denote a vertex, mid-side node and the centroid of the quadrilateral 
element r and trx(Vuk) is computed as the solution of the following minimization 
problem over the patch of elements connected to the vertex X: 

Find <rx(Vuh) G T2 such that 

mamp nsamp 

E (°1(V^) " V%)2(^) <   E (^ " Vuh)2(xe)       V a E V2        (4.5) 
t=i fci 

Here {xt}"™1
mp are the sampling-points which are taken to be the mapped (2 x 2) 

Gauss-Legendre points in the quadrilaterals connected to the vertex X. For the 
details about the implementation see [3-5]. 

4.1    The quality of the recovered derivatives in uniform 
grids 

First, let us assume that we would like to employ a uniform mesh of biquadratic 
elements. (Note that many practical computations are performed using quasi- 
uniform meshes of elements of quadratic degree.) We employed uniform meshes of 

mesh-size h — - and — with total number of degrees of freedom 1633 and 6337, 
8 16 

respectively. For the uniform-mesh with h = - we obtained 
8 

pu = 34.62% ,        ir. = 36.09% 

PUH = 19.38% ,        7T^ = 16.47% 

and for the uniform-mesh with h = — 
16 

PWH = 16.39%,        TT^ = 16.67% 

/>„£ = 12.30%,        *„H = 11.79% 

We observe the following: 

14 



1. Even for the relatively refined mesh with h =  — we cannot obtain 5% 

accuracy in the recovered-gradient in any of the subdomains. 

2. The error in the recovered derivatives is practically the same as the error in 
the derivatives of the finite-element solution in both subdomains. 

3. The pointwise effectivity index for the estimator based on recovered deriva- 
tives in the interior of the subdomains is practically equal to zero. 

4.2    The quality of the recovered derivatives for grids re- 
fined only in a subdomain of interest 

An approach which is often used in engineering analysis of complex structures 
is to refine the mesh locally only in regions of interest (see for example [14-16]). 
To show that this approach is meaningless, in general, let us refine the mesh in the 
neighborhood of subdomain Q,x as shown in Fig. 4 (the local uniform mesh-size in 

fij is equal to —J. Using this mesh we obtained for OJ^ = IT £ Th   TC.UA 

^ = 84.53%,        TTW» = 96.17% 

while the estimated relative-error was 

£* 
IIVttlL 

= 0.00036% 

The above results can be explained as follows: As we have already discussed in 
the Introduction we have 

er(V«Ä) - or(Vu) « VVf" 

Since we are refining the mesh only inside Qx the gradient of the pollution-error 
VV^f is practically constant in the interior of the subdomain and hence, in general, 
we cannot increase the accuracy of the recovered derivatives by refining the mesh, 
locally, only in the subdomain üh. Further, we have 

<r(yuh)-Vuh*VVf 
and thus, as the subdomain is refined, the estimated error converges to zero while 
the true error remains practically constant. For additional results and a complete 
discussion of the performance of estimators in the interior of locally refined meshes 
see [6]. 

15 



4.3    The quality of the recovered derivatives for globally- 
adaptive grids 

In [6] we showed that when the mesh is nearly-equilibrated in the energy-norm 
(i.e. globally-adaptive) the pollution-error is controlled relative to the local-error 
and the element error-indicators have effectivity-indices close to one everywhere 
in the mesh. Here we would like to demonstrate that the quality of the derivatives 
computed by local-recoveries is more sensitive to the pollution-error, than the quality 

of the local element error-indicators. 
We employed the feedback algorithm with 7 = 0.9 and constructed a sequence 

of adaptive grids. The convergence of the global energy-norm versus the number 
of degrees of freedom for this sequence is given in Fig. 5d. We see that the rate 
of convergence for the sequence of adaptively-constructed meshes is N*, where N 
is the number of degrees of freedom and p is the degree of the elements (p - 2). 
In Figs. 6a-6g we show seven meshes from the sequence of grids. These grids 
correspond to point Tx through T7 in the graph of Fig. 5. In Fig. 6d (resp. Fig. 6e) 
we give the globally-adaptive grid T4 (resp. T5) which achieves tolerance 4.77% 
(resp. 0.93%) in the global energy-norm. For the mesh T4 (resp. T5) we have 
pwh = 28.2%, ww, = 22.4% (resp. pu, = 8.48%, TT^ = 2.73%). In Fig. 7a 

(resp. Fig. 7b) we give the regions of 2.5%, 5% and 10% relative-error (shown dark- 
gray, gray, light-gray, respectively) for the gradient of the finite element solution 
(resp. the recovered gradient) in the subdomain u^, for the globally-adaptive mesh 
T4 shown in Fig. 6d. Note that there is significant gain in the 10%-regions for the 
recovered gradient compared with the gradient computed directly from the finite- 
element solution. In Fig. 8a (resp. Fig. 8b) we give the regions of 0.5%, 1% and 
2% relative-error in the gradient of the finite element solution (resp. the recovered 
gradient) in the subdomain u^ for the globally-adaptive mesh T5 shown in Fig. 6e. 
Note that there is a significant gain in the 2% regions for the recovered gradient 
compared with the gradient computed directly from the finite-element solution. In 
Fig. 9 we give the regions of 1%, 2%, 4% relative-error in the recovered gradient 
in the subdomain u\ for the globally-adaptive mesh T4. These regions will be 
compared with the regions given in the next Section for a global/local adaptive 

grid with respect to u>%. 
The above results can be explained as follows: By employing a mesh which is 

nearly-equilibrated in the energy-norm we are (indirectly) controlling the ratio 

maxlVVf |(a?) 

maxIW^K») " 

where r is any element and Cbh is a mesh-patch which consists of r and a few 

mesh-layers around it. Hence, from (1.7) we get 
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|cr(VuÄ) - Vti I (ä) < (0.20 +C) max |VVfh|(a;), s€r 

Thus if C is small we see that the error in the recovered gradient is less than the 
local error. Nevertheless, the accuracy of the recovered gradient may not be as 
high as predicted by the analysis in [1] because C may be comparable to 0.20. 

In summary, we observe the following: 

1. When a globally-adaptive grid is employed, with sufficiently small tolerance 
for the global energy-norm, the local accuracy of the recovered gradient is 
better than the local accuracy of the finite-element solution. 

2. Depending on the data and the subdomain of interest, it may be very expen- 
sive to employ a globally adaptive grid to achieve high local accuracy in a 
subdomain. 

4.4    The quality of the recovered derivatives in global/local 
adaptive grids 

We now describe numerical studies on the quality of recovered derivatives in 
global/local adaptive grids which are obtained using the algorithm described in 
Section 3.2. Here we will show that: 

(i) In general, we can obtain better accuracy in the recovered derivatives with 
fewer degrees of freedom, by employing a global/local adaptive grid with 
respect to the mesh-patch of interest instead of a globally-adaptive grid. 

(ii) The quality of the recovered derivatives, computed from a global/local adap- 
tive grid, can be enhanced by controlling the pollution-error to a sufficiently 
small tolerance. 

We used the global/local adaptive algorithm on an initial mesh which has h = - 
o 

in u>i and h = 1 in the rest of the domain. In Fig. 5 we give the convergence of the 
global energy-norm versus the number of degrees of freedom for the sequence of 
pollution-adaptive meshes with respect to the mesh-patch wj1. We see that for the 
global/local adaptive mesh-sequence the error, measured in the global energy-norm, 
is practically constant i.e. it does not decrease with the refinement of the mesh. 
This sequence was obtained by fixing the mesh in wf and by using the feedback 
algorithm which employs the pollution-indicators to refine the mesh outside tuf. In 

Fig. 10a we show the mesh from the sequence which achieves ,,_   ' — = 9.18% 
IIVufclLh 

17 



M h 
and -z^- = 19.13%.  For this mesh, which has 1053 degrees of freedom, pwh = 

«"? 
29.95%, ir^h = 10.32%.  In Fig. 10b we show the regions of the relative-error in 

the gradient of the finite element solution (i.e. ph) and in Fig. 10c we show the 
regions of relative-error in the recovered gradient (i.e. irh) in the subdomain w1? 

shown shaded in Fig. 10a. By comparing Figs. 10b and 10c, we observe that there 
is a significant gain in the 10%-relative-error regions when the recovered gradient 
is used instead of the gradient computed directly from the finite-element solution. 
We have, as before, 

/ max|W2
Wl|(*)\ a h 

|«r(Vufc)-V«| (x)<    0.20+-^-—-5—-    maxIW^K*),        ä € r C «f 
V max|VVi h\{x)J   *tT 

and since 

X€T 

",h r.h 

maxlVl^K«)      ||Vl?»|L      Mj, 

maxlVV^K«)       HVVfMU        S* 

Mwh 
by choosing the mesh such that -^ < 20% we have ensured higher-order accuracy 

*«? 
of ar(V«A) in wf. 

By comparing the results given in Fig. 10c with those given for the globally- 
adaptive mesh in Fig. 7b we observe that the desired tolerance (for the recovered 
derivative in the subdomain) can be achieved by using a global/local adaptive 
mesh which has a fourth of the degrees of freedom of a globally-adaptive mesh 
which achieves the same accuracy in the subdomain (although the global energy- 
norm of the error for the global/local adaptive mesh is large). In Fig. 11a (resp. 
Fig. lib) we show the regions in wf, where the pointwise effectivity-index K is 
between 0.8 and 1.2 for the globally-adaptive mesh (resp. global/local adaptive 
mesh with respect to Jj) shown in Fig. 6d (resp. Fig. 10). We observe that for 
both grids the effectivity-index is in the range [0.8, 1.2] in large portions of u>{\ In 
the case of the global/local adaptive grid we have 0.8 < K < 1.2 almost over the 
entire subdomain. 

In order to demonstrate the sensitivity of the recovered gradient to the pollution- 
error we give, in Figs. 12a and 12b, the regions of relative-error in the recov- 
ered derivative for the pollution-adaptive meshes with respect to u>f which achieve 
M h 
—^ = 44.60% and 11.77% respectively.   By comparing Fig. 10c, Fig. 12a and 
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Fig. 12b we observe that when the pollution error in uf^ is controlled to a smaller 
tolerance (relative to the local-error in Wj) there is a substantial gain in the 5%- 
relative-error regions for the recovered gradient. 

In order to achieve the goal ,,   '"1 ,, < 5% we employed an initial grid with 
llvuA|| 

mesh-size h = — in u^.   In Figs. 13a and 13b we show the meshes (from the 
16 2 

sequence of pollution-adaptive meshes with respect to wj1, where h = —) for 

which —— = 7.76% and -^- = 4.47%, respectively. In Figs. 14a, 14b we show 
<*»;• 

regions of relative-error in the recovered gradient wh for the mesh of Fig. 13a, 
13b, respectively. As observed earlier, when the pollution error is controlled to a 
smaller tolerance, there is a significant gain in the 2%-relative-error regions for the 

recovered-gradient. 
Finally, we show that in general we cannot predict a-priori how to refine the 

mesh in order to control the pollution-error in a given subdomain. We considered 

the mesh-patch wj, meshed with uniform-grid with h = -, and constructed the 
o 

sequence of pollution-adaptive grids with respect to u>%. In Figs. 15a and 15b we 
MWH Mwh 

give the meshes from this sequence which give        2 = 5.79% and        2 = 1.73%, 

respectively. We note that these meshes are refined several times near the corner at 
C which is far from the subdomain u^ while only a few refinements are employed 
near the corner at F (which is much closer to the subdomain than C). In Figs. 16a 
and 16b we give the regions of the relative-error in the recovered gradient in u\ for 
the meshes shown in Figs. 15a and 15b, respectively. By comparing Fig. 16a and 
Fig. 9 we note that there is a significant gain in the 4%-relative-error regions when a 
global/local adaptive mesh is employed instead of a globally-adaptive mesh. Note 
that the global/local adaptive meshes are much more graded near the singular- 
points than the globally-adaptive meshes shown in Figs. 6a-6g. 

In summary, we observe the following: 

1. By controlling the pollution-error to a sufficiently low tolerance in a subdo- 
main of interest we can obtain full gain in the local accuracy of the recovered 

gradient in that subdomain. 

2. When one is interested in obtaining high-accuracy only in a small subdomain, 
global/local adaptive meshes with respect to the region of interest are, in 
general, much more economical than globally-adaptive meshes. 

3. In general, we cannot say a-priori how to refine the mesh in order to control 
the pollution-error in a region of interest. 
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5 Conclusions 

We studied the effect of the pollution-error on the pointwise quality of the 
recovered derivatives in the interior of the mesh. We observed the following: 

1. When quasi-uniform meshes, or meshes which are locally refined only in the 
subdomain, are employed it may not be possible to achieve better accuracy 
(than the finite element solution) by using a local recovery in a subdomain 
of interest. 

2. When a globally-adaptive mesh is employed, the local quality of the recovery 
can be ensured only for a sufficiently low tolerance for the global energy- 
norm. Such meshes may be very expensive when one is interested to achieve 
good accuracy only in a local region. 

3. By employing global/local adaptive meshes we can control the pollution-error 
(to within any prescribed tolerance) in any patch of elements of interest and 
we can obtain higher-order accuracy (relative to the finite element solution) 
by employing a local recovery. 

4. For the boundary-value problems which occur in practical computations 
(which include many corner points) desired local accuracies can be achieved 
with much fewer degrees of freedom by employing global/local-adaptive meshes 
instead of globally-adaptive meshes. 
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List of Figures 
Fig. 1. An example which illustrates the definition of the local and the pollution- 
error, (a) The L-shaped domain covered by a uniform mesh of quadratic triangles. 

The exact solution u(r, t?) = rs sin f — J was employed to impose non-homogeneous 

Neumann boundary-condition on A2A3, A3A4, A4A5, A5A6. Homogeneous Dirich- 
let boundary-conditions were applied on A^», A6A1. (b) The directional deriva- 
tives of the local and the pollution-error, W" -s and VV^ • s and the estimated 
error ea • s along A-,A3. Note that the estimated-error practically coincides with 
the local-error VVf  • s. 

Fig. 2. Definition of r,n and rout for an interior edge with respect to the unit- 
normal n assigned to the edge. 

Fig. 3. The domain of the model problem meshed with a uniform mesh of bi- 

quadratic elements with mesh-size h = -. The subdomains fix, fi2 are shown 

shaded gray. Note that for this mesh p , = 34.62%, % , = 36.09%, p a = 19.38%, 

7T , = 16.47%. 
wh 

Fig. 4. A mesh of biquadratic elements locally refined in the neighborhood of 
the subdomain w°. The local mesh-size in the neighborhood of the subdomain is 

h = —. Note that for this mesh p , = 84.53% and x t = 96.17%. 
64 '"o wo 

Fig. 5. Convergence of the global energy-norm of the error versus the number of 
degrees of freedom for the sequences of globally adaptive grids and of pollution- 

adaptive grids with respect to u^ (for h = - in w*).  Note that the error for the 
8 

globally-adaptive grids converges quadratically.   For the pollution-adaptive grids 
the global energy-norm of the error is very large for all the meshes in the sequence. 

Fig. 6. The sequence of globally-adaptive meshes of biquadratic elements gener- 
ated by the feedback algorithm. Mesh corresponding to: (a) Tx\ (b) T2; (c) T3; 
(d) T4; (e) T5; (f) T6; (g) T7. The points Tj through T7 are shown in the conver- 
gence graph of Fig. 5. 

Fig. 7. The regions of relative-error in the subdomain cuf for the globally-adaptive 
mesh shown in Fig. 6d. 
(a) The regions of 2.5%, 5%, 10% (dark gray, gray, light gray) for ph, the relative- 
error in the gradient of the finite element solution; 
(b) The regions of 2.5%, 5%, 10% (dark gray, gray, light gray) for 7^, the relative- 
error in the recovered gradient. 
Note that there is a significant gain in the 10%-regions when the recovered gradient 
is employed instead of the gradient of the finite-element solution. 

Fig. 8. The regions of relative-error in the subdomain ux for the globally-adaptive 
mesh shown in Fig. 6e. 
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(a) The regions of 0.5%, 1%, 2% (dark gray, gray, light gray) for Ph, the relative- 
error in the gradient of the finite element solution; 
(b) The regions of 0.5%, 1%, 2% (dark gray, gray, light gray) for 7rfc, the relative- 

error in the recovered gradient. 
Note that there is a significant gain in the 2%-regions when the recovered gradient 
is employed instead of the gradient of the finite-element solution. 

Fig. 9. The regions of 1%, 2%, 4% (dark gray, gray, light gray) for the relative- 
error in the recovered gradient in the subdomain w£ for the globally-adaptive mesh 

shown in Fig. 6d. 

Fig. 10. The mesh and the corresponding regions of relative-error obtained using 
the global/local adaptive algorithm: 

(a) The mesh of biquadratic elements which achieves ,      "V ^   = 9.18% and 

M h 
= 19.13%. The subdomain u^ is shown shaded gray. 

^ 
(b)The regions of 2.5%, 5%, 10% (dark gray, gray, light gray) for the relative-error 
in the gradient of the finite element solution ph. 
(c) The regions of 2.5%, 5%, 10% (dark gray, gray, light gray) for the relative-error 
in the recovered gradient irh. 
Note that the 10%-regions for nh are significantly larger than those given in Fig. 76 
for the global-adaptive mesh. Note also that the mesh around the corner-point at 

F is lefl completely unrefined. 

Fig. 11.   The pointwise effectivity index for the recovered gradient, «(«).   The 
regions where 0.8 < K(X) < 1.2 are shown shaded gray for: 
(a) The subdomain wf given in Fig. 6d for the globally adaptive mesh; 
(b) The subdomain u\ given in Fig. 10a for the global/local adaptive mesh with 

respect to u>\. 
Note that in the case of the global/local adaptive mesh, we have 0.8 < K < 1.2 
almost over the entire subdomain. 
Fig. 12. The regions of 2.5%, 5%, 10% (dark gray, gray, light gray) for the 
relative-error in the recovered gradient irh in wf for global/local adaptive meshes 
with respect to wf for which the following tolerances were achieved: 

(a) J**      = 7.87% and -^ = 44.60%; 

(b) __SJ±— = 9.62% and —^ = 11.77%. 
IIVuJI^ £wn 

Note that when the pollution-error in ^ was controlled to a smaller tolerance, 
there is significant gain in the 5%-relative-error regions. 

24 



Fig. 13. Global/local adaptive meshes of biquadratic elements with respect to co^ 
achieving the following tolerances: 

(a) „    "*„     = 2.62% and —^ = 7.76%; 
l|VuJ|w{l £WH 

e h M h 
0>) T^r\- = 4-13% and —^ = 4.47%. 

"i 

Note that the mesh near the corner-point F is also refined several times (compared 
to the mesh shown in Fig. 10a where the mesh near F is left unrefined). 

Fig. 14. The regions of 0.5%, 1%, 2% (dark gray, gray and light gray) for the 
relative-error in the recovered gradient irh in u*. The regions are given for the 
global-local adaptive meshes shown in: (a) Fig. 13a; (b) Fig. 13b. 

Fig. 15. Global/local adaptive meshes of biquadratic elements with respect to w£ 
achieving the following tolerances: 

S h M h 

(a) „     "a„     = 3.28% and —^ = 5-79%5 

C KA 

0>) n^"*.,     = 4-00% and —^ = 1.73%. 

We note that the mesh is refined several times near the corner at C (which is far 
from the subdomain u\) while only a few refinements are employed near the corner 
at F (which is much closer to the subdomain than C). 

Fig. 16. The regions of relative-error in the recovered gradient in tu£ for the 
global/local adaptive meshes with respect to u% shown in Fig. 15: 
(a) The regions for 1%, 2%, 4% (dark gray, gray, light gray) for the mesh shown 
in Fig. 15a which has pollution-error of 5.79%; 
(b) The regions for 0.25%, 0.3%, 1% (dark gray, gray, light gray) for the mesh 
shown in Fig. 14b which has pollution-error of 1.73%. 
Note that there is a significant gain in the 1%-relative-error regions when the 
pollution-error is controlled to a smaller tolerance. 
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lle_hll/Hull = 4.77% , FE-error 
Regions of 2.5% , 5% , 10% 
MIN = 0.014, MAX = 0.282 

Fig. 7a 



Ilejill/llull = 4.77% , ZZ-error 
Regions of 2.5% , 5% , 10% 
MIN = 0.012 , MAX = 0.224 

Fig. 7b 
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lle_hll/llull = 0.93% , FE error 
Regions of 0.5% , 1% , 2% 

Fig. 8a 



Ilejill/llull = 0.93% , ZZ-error 
Regions of 0.5% , 1% , 2% 
MIN = 0.00009 , MAX = 0.027 

Fig. 8b 



Ilejill/llull = 4.77% , ZZ-error 
Regions of 1.0% , 2% , 4% 
MIN = 0.006 , MAX = 0.146 
Patch 2 

Fig. 9 



\ ^^' 

\ / 

,'   / \ 

— T ^=f—I \ 
■A 

CO o 

bo 
• iH 

in o 

II 
fa 
O 
O z 



0 

0 

0 

0 

0 

© 

G 

IIV2ll/eta = 19.13% , FE-error 
Regions of 2.5% , 5% , 10% 
MIN = 0.009 , MAX = 0.299 

Fig. 10b 



IIV2ll/eta = 19.13% , ZZ-error 
Regions of 2.5% , 5% , 10% 
MIN = 0.007 , MAX = 0.103 

Fig. 10c 



Fig. 11a 



Fig. lib 



IIV2ll/eta = 44.60% , ZZ-error 
Regions of 2.5% , 5% , 10% 
MIN = 0.019 , MAX = 0.241 

Fig. 12a 



IIV2ll/eta = 11.77% , ZZ-error 
Regions of 2.5% , 5% , 10% 
MIN = 0.0004 , MAX = 0.081 

Fig. 12b 
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IIV2ll/eta = 7.76% , ZZ-error 
Regions of 0.5% , 1% , 2% 
MIN = 0.000004 , MAX = 0.033 

Fig. 14a 



IIV2ll/eta = 4.48% , ZZ-error 
Regions of 0.5% , 1% , 2% 
MIN = 1.44E-7 , MAX = 0.021 

Fig.  14b 
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IIV2ll/eta = 5.79% , ZZ-error 
Regions of 1.0% , 2% , 4% 
MIN = 0.0003 , MAX = 0.043 
Patch 2 

Fig. 16a 



IIV2ll/eta = 1.73% , ZZ-error 
Regions of 0.25% , 0.5% , 1.0% 
MIN = 1.33E-7 , MAX = 0.014 

Fig. 16b 



The Laboratory for Numerical Analysis is an integral part of the Institute for Physical 
Science and Technology of the University of Maryland, under the general administration of the 
Director, Institute for Physical Science and Technology. It has the following goals: 

To conduct research in the mathematical theory and computational implementation of 
numerical analysis and related topics, with emphasis on the numerical treatment of 
linear and nonlinear differential equations and problems in linear and nonlinear algebra. 

To help bridge gaps between computational directions in engineering, physics, etc., and 
those in the mathematical community. 

To provide a limited consulting service in all areas of numerical mathematics to the 
University as a whole, and also to government agencies and industries in the State of 
Maryland and the Washington Metropolitan area. 

To assist with the education of numerical analysts, especially at the postdoctoral level, 
in conjunction with the Interdisciplinary Applied Mathematics Program and the 
programs of the Mathematics and Computer Science Departments. This includes active 
collaboration with government agencies such as the National Institute of Standards and 
Technology. 

To be an international center of study and research for foreign students in numerical 
mathematics who are supported by foreign governments or exchange agencies 
(Fulbright, etc.). 

Further information may be obtained from Professor I. BabuSka, Chairman, Laboratory for 
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College 
Park, Maryland 20742-2431. 


